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1. INTRODUCTION 

OVER THE past three decades many studies on radiative 
heat transfer in anisotropically scattering media have been 
conducted. This is because the radiative contribution can be 
significant in the problem of energy transport in coal-fired 
furnaces, metalixed propelfant plumes, and particulate 
clouds. Most of these studies considered onedimensioM1 
geometry [I]. In recent years, exact integral formulation has 
been developed for multi-dimensional anisotropic scattering. 
Ccosbie and Dougherty (21 modeled the scattering of a laser 
beam in a radially infinite cylindrical medium. Lin and Tsai 
[3] presented integral formulation in terms of source 
function. Integral equations of moments of intensity for 
anisotropic scattering in a medium with Fresnei boundaries 
have been developed recently by Wu [4]. However, these 
authors have not reported accurate solutions of the exact 
integral f~uIation for anisotropic scattering in a two- 
dimensional rectangutar medium whereas various solutions 
of the exact integral formulation for relatively simpler iso- 
tropic scattering in the same geometry have been presented 
1% 61. 

The purpose of this work is to present an accurate solution 
of the integral equations describing conservative anisotropic 
scattering in a two-dimensional rectangular medium exposed 
to collimated radiation. For anisotropic scattering, the for- 
mulation in terms of moments of intensity involves spatial 
variables only [4]. Since the reduction in independent vari- 
ables offers a significant simpliition when we develop a 
solution, the integral equations of moments of intensity are 
adopted in this work. 

2, INTEGRAL FORMU~~ON 

Define the optical coordinates as (x, y, t), which are the 
products of geometric coordinates and the extinction 
coe.fficient. The medium considered is a rectangular bar 
~und~by~~ *band== 0, C. but unbounded in the f. x- 
direction. The origin of the coordinates is at the center of 
the bottom. The assumptions about the system are: (i) the 
medium is homogeneous, (ii) the medium is in local ther- 
modynamic equilibrium, (iii) steady state is achieved, (iv) 
scattering in the medium is conservative and linearly aniso- 
tropic, (v) the index of refraction is unity, (vi) the medium 
does not reflect or reradiate at the boundaries, and (vii) a 
normal uniform collimated radiation, IO. is incident at the 
bottom. 

Define the source function as 

S(s, n) = (I /4x) 
I 

I(s,n?(l +a,iZ*G)dG (I) 
4* 

where 2 is the radiation intensity, s an arbitrary path from 
the boundary to a location in the medium, G the direction 
determined by the polar angle B and the azimuthal angle #, 
and Q, the coefficient of anisotropic scattering. Following 
the procedure described in our previous work [4], one can 
recast the source function as 

xv, 5 8, 4) = ~[J~y,z)+a, cost'Q&,=, 

+ Q I sin 6 sin t?Q?.~n zf I (2) 

where .i, Q? and Q= are dimensionless moments of the inten- 
sity. These moments satisfy the integral equations 

+Q, y (y -y'fe,(y',Y) 
3 

d:‘dy’ (3) 

Q&J) 

+Q, s~(y-y')(r--r')Q,(r:~') 

where 

? = [(y-y’)f+(z-:‘)*I’ 2 (6) 

and S. is a general&d exponential integral function dellned 
by 

;S”(r) = 
m 

I 

e-r’ 
, p($ _ 1) ’ 2 dr. (7) 

The integral on the right-hand side of equation (7) is the so- 
called Oakley-Naylor fuuction 17, 81. Physically, I is the 
total radiation intensity, Q.* the y component of radiative 
flux and Q, the L component of radiative Bux. 

3. MFTtlOD OF SOLUTION 

A simple collocation method is now applied to develop 
solutions to equations (3)-(5). Because of the symmetry of 
the radiation field in the y direction, we assume J(r, z), 
Q&n 4 and Q,(Y. ~1 to h 

(8) 

(9) 
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where A,, B, and C, are ~dete~n~ coethcients. Appty- 
ing these ~lyno~~ to the right-hand side of equations 
(3&S). we obtain 

b 
X 

c g, (21 

Is 
- y’V”**n d=’ dy’ 

-bD 5 

X ‘r” dr’dy’ 

(121 

6 

X IS c$f&,,_y’)~y’“+‘r” dr’dy;, (13) 
-b 0 

in the coilomtion method, we force the left-hand side of 
q~tjo~s (I I)-( 13) to be equal to the assumed ~l~o~ais 
for J(n ~1, Q& z> and Q,(y, .rI, rcwxtiveiy, at W+ 11 
(N+ 1) collocation points. In this work, we choosa the Gaus- 
sian points to be the coliocation points 191. This getterates 
3(&f+ i)(N+ 1) algebraic quations for the dete~nadon of 
A,, S, and C,. 

4. RESULTS AND DISCUSSION 

Once A, 3.. aad C, are determined, there are two 
ways to compute &Y, %I, Q& z) and Q,cvt z). One applies 
equations (8)_(10) and&other apptiu~~tions([ D-o-(3). 
Since the development of equations (l&03) is an iterative 

Table 1. Com&irisoa of the total radiation intensity at y = 0 
for a variety of optical sizes (0, = 0) 

Equations Eq~tio~s Ref. 
b e zlc @H tot 0 l)_(f3~ PI 

0.125 0.25 o.OoaO 1.134 
0.1519 1.140 
0.3731 1.107 
0.5000 1.078 
0.6269 1.045 
0.8481 0.9720 
1.oOOO 0.9002 

0.5 1.0 0.~ 1.436 
&IS19 f ,475 
0.373 1 1.340 
0.5000 1.229 
0.6269 1.106 
0.848 1 0.8653 
Lot@0 0.6555 

2.0 4.0 o.oooo 2.117 
0.1519 2.3OI 
0.3731 1.743 
0.5000 1.384 
0.6269 f.OS5 
0.8481 0.5627 
l.Oooo 0.2484 

1.130 
1.140 
t.107 
1.078 

z9 
0:8972 
1.416 
1,474 
1.340 
I .229 
1.105 
0.8650 
0.6470 
2.010 
2.297 
f-744 
1.384 
f .054 
0.563 I 
0.2411 

1.130 
1.140 
1.107 
1.078 

;Kt 
0:8972 
1.416 
I.474 
1.340 
1.229 
1.105 
0.8648 
0.6472 
2.011 
2.295 
1.744 
1.383 
1.052 
0.5627 
0.2423 

procedure, a smaii difference between the rest&s using the 
two sets ofquations reveals the accuracy of the results. This 
is ilhtstrated in Table 1. As expected, when the difference 
between the results using equations (3~~10~ and those using 
equations (11)-( 13) is small, the agreement of the present 
results with Crosbie and Schrenker’s results [s] for isotropic 
scattering is excellent. Furthermore, the expansion with 
M = 3 and N = 6 is applied to an anisotropically scattering 
rectangular medium with a large aspect ratio, 2&c = 8. Due 
to the lack of results for two~imensional anisotropic scat- 
tering, eomparisotts are made with o~e~imcnsio~l 
geometry exposed to co&mated radiation, as shown in Fig. 
I. At theoenter of the medium the present solutio~sapproach 
o~e~me~onal iteration solutions [4]. The consistency of 
the results for the hmiting eases shows the validity of the 
present method. 

FOG. t, Comparisons of one~~rnen~o~al (c = 0.5) and two- 
dimewionai (b = 2.0, c = 0.5) anisotropic scattering: the 

gux leaving the bottom surface. Q;(y, 0). 
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FIG. 2. The total radiation intensity at y = 0, J(0, z), for a 
slab and a square. 

Figure 1 shows that the outward flux decreases as the 
location considered moves to the corner. The corner effects 
are because part of the radiation is scattered out of the side 
surface before reaching the bottom. Backward scattering, 
saya,= -0.7, aiways generates the largest outward flux at 
the bottom, Q;(y, 0). while forward scattering, say at = 0.7, 
generates the smatlest, as shown in Fi8. 1. This is because 
radiation oridnating at a point in the medium or at a bound- 
ary is more easily n&c&d back into the surroundings due to 
a relatively larger backward scattering. Besides, the incident 
radiation penetrating a medium decmases with optical size. 
This tendency is the same as that found in isotropic scattering 
[S] (see also Table 1). 

Figure 2 shows that (i) the total intensity at the locations 
around the bottom is increased by backward scattering, but 
is decreased by forward scattering, (ii) the maximum of the 
total intensity locates about 10% of the optical thickness 
above the bottom, and (iii) the total intensity in a square 
medium is less than that in a slab with the same optical 
thickness. 
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lNTRODUCTlON 

ANALYSFS of laminar mixed convection from a horizontal 
line source of heat have been reported in a number of recent 
studies. These in&de the earliest by Wood It], followed by 
those of Wesscling [2], A&al [3] and K~~n~u~y and 
Gebhart [4]. All these studies were primarily concerned with 
the predictions of velocity and temperature fields. 

In this oaoer. the stability of such flows to small dis- 
turbances \s*in&stigated in- terms of the linear stabifity 
theory. The buoyancy force and the free stream flow are 
taken to be in the same direction. The region sufficiently 
downstream of the source is considered, where buoyancy 
effects dominate. This flow configuration, is usually termed 
aiding mixed convection. 

The effit of the free stream is considered as a perturbation 
in the far-field boundary condition on the tangential velocity 
component of the natural convection plume. This per- 
turbation is termed the mixed conmtion effect and is char- 
acterized by the parameter sM_ Also taken into account is 

the first-order correction to the ‘classicaf boundary layer 
solution to the natural convection plume. This correction 
results from the interaction of the plume with the irrotational 
Bow outside the boundary layer. T?ds perturbation is termed 
the higher-order effect and is characterixed by .sH. The base 
flow is taken to be the classical natural convection plume 
perturbed by eH and sH. The stability analysis is then per- 
formed by expanding the diiurbance lieid too, in terms of 
these two fruition parameters. These two perturbation 
parameters have been so chosen that at zero order, the 
govetning equations reduce to that of the laminar natural 
convection plume. Computed results are presented and dis- 
cussed for Pr = 0.7. 

ANALYSIS 

The mixed convection Row arising from an infinitely long 
horizontat line source of heat is considered as a two-dimen- 
sional steady Row. With the usual Boussinesq approxi- 


