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1. INTRODUCTION

Over THE past three decades many studies on radiative
heat transfer in anisotropically scattering media have been
conducted. This is because the radiative contribution can be
significant in the problem of energy transport in coal-fired
furnaces, metalized propellant plumes, and particulate
clouds. Most of these studies considered one-dimensional
geometry [1]. In recent years, exact integral formulation has
been developed for multi-dimensional anisotropic scattering.
Crosbie and Dougherty [2] modeled the scattering of a laser
beam in a radially infinite cylindrical medium. Lin and Tsai
[3] presented integral formulation in terms of source
function. Integral equations of moments of intensity for
anisotropic scattering in a medium with Fresnel boundaries
have been developed recently by Wu [4]. However, these
authors have not reported accurate solutions of the exact
integral formulation for anisotropic scattering in a two-
dimensional rectangular medium whereas various solutions
of the exact integral formulation for relatively simpler iso-
tropic scattering in the same geometry have been presented
[5, 6).

The purpose of this work is to present an accurate solution
of the integral equations describing conservative anisotropic
scattering in a two-dimensional rectangular medium exposed
to collimated radiation. For anisotropic scattering, the for-
mulation in terms of moments of intensity involves spatial
variables only [4]. Since the reduction in independent vari-
ables offers a significant simplification when we develop a
solution, the integral equations of moments of intensity are
adopted in this work.

2. INTEGRAL FORMULATION

Define the optical coordinates as (x, y, z), which are the
products of geometric coordinates and the extinction
coefficient. The medium considered is a rectangular bar
bounded by y = 4 band z = 0, ¢, but unbounded in the +x-
direction. The origin of the coordinates is at the center of
the bottom. The assumptions about the system are: (i) the
medium is homogeneous, (i) the medium is in local ther-
modynamic equilibrium, (iii) steady state is achieved, (iv)
scattering in the medium is conservative and linearly aniso-
tropic, (v) the index of refraction is unity, (vi) the medium
does not reflect or reradiate at the boundaries, and (vii) a
normal uniform collimated radiation, /,, is incident at the
bottom.

Define the source function as

S(s,82) = (l/41t)-[ I(5, )1 +a,2-2)dQ" (1)

where 7 is the radiation intensity, s an arbitrary path from
the boundary to a location in the medium, Q the direction
determined by the polar angle 8 and the azimuthal angle ¢,
and a, the coefficient of anisotropic scattering. Following
the procedure described in our previous work [4], one can
recast the source function as
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where J, @, and Q. are dimensionless moments of the inten-
sity. These moments satxsfy the integral equations
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t=[(y~y)+-)]? (6)

and S, is a generalized exponential integral function defined
by

n o e"‘“ff
ES,,(T) -'-"—-J‘l Wdl (7)

The integral on the right-hand side of equation (7) is the so~
called Bickley-Naylor function [7, 8]. Physically, J is the
total radiation intensity, @, the y component of radiative
flux and @, the z component of radiative flux.

3. METHOD OF SOLUTION

A simple collocation method is now applied to develop
solutions to equations (3)~(5). Because of the symmetry of
the radiation field in the y direction, we assume J{y, 2),
Q.(y, 2) and Q,(, 2) to be
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where A, B, and C,, are undetermined coefficients. Apply-
ing these polynomials to the right-hand side of equations
(3)-(5), we obtain
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In the coilocation method, we force the lefi-hand side of
equations (11)-(13) to be equal to the assumed polynomials
for J(3,2), Q.(y,2) and Q.(y, 2), respectively, at (M+1)
{N+1) collocation points. In this work, we choose the Gaus-
sian points to be the collocation points [9]. This generates
3(M + 1N+ 1) algebraic equations for the determination of
Apns By and C,,,

4. RESULTS AND DISCUSSION

Once A, B, and C,, are determined, there are two
ways to compute J(y, 2), Q.(y, 2) and Q,{(», 2). One applies
equations (8)~(10) and the other applies equations (11)(13).
Since the development of equations (11)-{(13) is an iterative
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Table 1. Comparison of the total radiation intensityat y = 0
for a variety of optical sizes (a, = 0)

Equations  Equations  Ref
b ¢ z/e -1 (aD-(13) {s]
0.125 025 0.0000 1.134 1.130 1.130
0.1519 1.140 1.140 1.140
0.3731 1.107 L.107 L107
0.5000 1078 1.078 1.078
0.6269 1.045 1.044 1.044
0.8481 0.9720 09719  0.9718
1.0000 09002 0.8972  0.8972
0.5 1.0 0.0000 1.436 1.416 1.416
0.1519 1.475 1.474 1.474
0.3731 1.340 1.340 1.340
0.5000 1.229 1.229 1.229
0.6269 1.106 1.105 1.105
0.8481 0.8653 0.8650 0.8648
10000  0.6555 0.6470  0.6472
20 40 0.0000 2.117 2.010 2,011
6.1519  2.301 2297 2.295
0.3731 1.743 1.744 1.744
0.5000 1.384 1.384 1.383
0.6269 1.055 1.054 1.052
0.8481 0.5627 0.5631  0.5627
1.0000  0.2484 0.2411 0.2423

procedure, a small difference between the results using the
two sets of equations reveals the accuracy of the results. This
is illustrated in Table 1. As expected, when the difference
between the results using equations (8)-(10) and those using
equations (11)-(13) is small, the agreement of the present
results with Crosbie and Schrenker’s results [5] for isotropic
scattering is excellent. Furthermore, the expansion with
M =3 and N = 6 is applied to an anisotropically scattering
rectangular medium with a large aspect ratio, 2b/c = 8. Due
to the lack of results for two-dimensional anisotropic scat-
tering, comparisons are made with one-dimensional
geometry exposed to collimated radiation, as shown in Fig.
1. At the center of the medium the present solutions approach
one-dimensional iteration solutions {4]. The consistency of
the results for the limiting cases shows the validity of the
present method.
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Fic. 1. Comparisons of one-dimensional (¢ = 0.5) and two-
dimensional (= 2.0, ¢ = 0.5) anisotropic scattering: the
flux leaving the bottom surface, 0" (y, 0).
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FiG. 2. The total radiation intensity at y = 0, J(0,2), for a
slab and a square.

Figure 1 shows that the outward flux decreases as the
location considered moves to the corner. The corner effects
are because part of the radiation is scattered out of the side
surface before reaching the bottom. Backward scattering,
say a, = —0.7, always generates the largest outward flux at
the bottom, Q;(y, 0), while forward scattering, say a, = 0.7,
generates the smallest, as shown in Fig. 1. This is because
radiation originating at a point in the medium or at a bound-
ary is more easily reflected back into the surroundings due to
a relatively larger backward scattering. Besides, the incident
radiation penetrating a medium decreases with optical size.
This tendency is the same as that found in isotropic scattering
{5] (see also Table 1).
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Figure 2 shows that (i) the total intensity at the locations
around the bottom is increased by backward scattering, but
is decreased by forward scattering, (ii) the maximum of the
total intensity locates about 10% of the optical thickness
above the bottom, and (jii) the total intensity in a square
medium is less than that in a slab with the same optical
thickness.
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INTRODUCTION

ANALYSES of laminar mixed convection from a horizontal
line source of heat have been reported in 2 number of recent
studies. These include the earliest by Wood {1}, followed by
those of Wesseling [2], Afzal [3] and Krishnamurthy and
Gebhart [4]. All these studies were primarily concerned with
the predictions of velocity and temperature fields.

In this paper, the stability of such flows to small dis-
turbances is investigated in terms of the linear stability
theory. The buoyancy force and the free stream flow are
taken to be in the same direction. The region sufficiently
downstream of the source is considered, where buoyancy
effects dominate. This flow configuration, is usually termed
aiding mixed convection.

The effect of the free stream is considered as a perturbation
in the far-field boundary condition on the tangential velocity
component of the natural convection plume. This per-
turbation is termed the mixed convection effect and is char-
acterized by the parameter gy,. Also taken into account is

the first-order correction to the ‘classical’ boundary layer
solution to the natural convection plume. This correction
results from the interaction of the plume with the irrotational
flow outside the boundary layer. This perturbation is termed
the higher-order effect and is characterized by &;. The base
flow is taken to be the classical natural convection plume
perturbed by &y and sy. The stability analysis is then per-
formed by expanding the disturbance field too, in terms of
these two perturbation parameters. These two perturbation
parameters have been so chosen that at zero order, the
governing equations reduce to that of the laminar natural
convection plume. Computed results are presented and dis-
cussed for Pr=0.7.

ANALYSIS

The mixed convection flow arising from an infinitely long
horizontal line source of heat is considered as a two-dimen-
sional steady flow. With the usual Boussinesq approxi-



